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Abstract— This work introduces a novel hybrid soft-rigid
spacecraft manipulator system (HSMS) integrating a tendon-
driven continuum robot with a conventional satellite-mounted
rigid manipulator. Building upon the Geometric Variable Strain
(GVS) approach, the dynamic model of the HSMS is explic-
itly obtained as a set of minimal-order ordinary differential
equations. Preliminary control design is conducted leveraging
the obtained model, and a tracking maneuver is performed
in simulation for the combined spacecraft-manipulator system.
Numerical results are reported demonstrating the validity of
the proposed approach and motivating further investigation in
this problem.

I. INTRODUCTION

Space manipulators, defined as spacecraft equipped with
one or more robotic arms on the primary platform, will
play a crucial role in various space-based scenarios, such as
spacecraft servicing, in-space assembly, and manufacturing
[1]. Despite the technological maturity demonstrated by
past missions [2], [3], many challenges remain regarding
autonomous operational capabilities [4], [5].

Most studies to date have focused on modeling and
controlling rigid space manipulator platforms—systems com-
prising rigid bodies interconnected by rigid joints [6]-[9].
More recently, structural flexibility has been incorporated
into system analysis and control design methodologies [10]-
[12]. In the past few years, increasing attention has been
dedicated to integrating soft robotics concepts into space-
based applications [13], [14]. Soft robots are inherently
lightweight and compliant [15], making them promising
candidates for delicate space tasks such as dynamic grasping
and in-space manipulation.

In this work, we build on recent advances to introduce
a hybrid soft–rigid space manipulator system (HSMS) inte-
grating a tendon-driven continuum link with a spacecraft-
mounted rigid arm. Inspired by progress in modeling hybrid
systems [19], [20], [26], we derive a compact, minimal-
order set of ordinary differential equations that is particularly
suitable for control design. To illustrate its effectiveness, we
investigate a task-space controller that guides the soft link’s
tip along a challenging 3D trajectory, demonstrating excellent
performance and motivating further developments.
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II. HYBRID SPACE MANIPULATOR MODEL

In this section, we introduce the mathematical nota-
tion used throughout the paper, followed by the kine-
matic and dynamic models of the hybrid soft–rigid space-
craft–manipulator system (HSMS). For clarity, we focus on
a representative configuration in which a satellite-mounted,
2-DoF rigid manipulator with revolute joints carries a tendon-
driven continuum link, as shown in Fig. 1. However, the
proposed formulation generalizes to any interconnection of
rigid and soft links mounted on a free-flying base.

A. Notation and HSMS Kinematics

We denote the pose transformation from frame Y to
frame Z by gY/Z ∈ SE(3), where SE(3) is the special
Euclidean group. Vectors in se(3), the Lie algebra of SE(3),
also play a key role in our exposition. Depending on the
context, we refer to these vectors either by their coordinate
representation in R6 or as elements of se(3). The “hat”
symbol ·̂ denotes the isomorphism (̂·) : R6 → se(3). The
Adjoint representation Adg(·) : se(3) → se(3) encodes a
coordinate transformation between different frames, while
the Lie algebra adjoint adξ̂(·) : se(3) → se(3) arises from
differentiating Adg with respect to g. For further details, see
[17] and Appendix A in [16].

Consider the schematic of the HSMS in Fig. 1. We define
an inertial reference frame I, along with a spacecraft-base
frame B located at the base’s center of mass, whose axes
align with the base’s principal inertia axes. Two additional
frames, R1, R2, are assigned to the rigid manipulator links
in the same manner. The root of the soft link is attached at
the end of the second link, and the curvilinear coordinate
s ∈ [0, ℓ] spans its continuum backbone from root (s = 0)
to tip (s = ℓ). A cross-sectional frame X (s) is associated
with each cross-section of the soft link at coordinate s. For
convenience, we define two further frames at the root and
tip of the soft link: F ≜ X (s = 0) and E ≜ X (s = l).

Referring to Fig. 1, the pose of frame F with respect to
frame I is given by

gI/F(qR) = gI/B(qB)gB/R1
(q1)gR1/R2

(q2)gR2/F , (1)

where qR ≜ [qB, q1, q2]
T, with qB ∈ R6 representing the

base degrees of freedom, and scalars q1, q2 denoting the joint
angles. The configuration of the soft appendage is described
by a curve in SE(3), gF/X(·) : [0, ℓ] → SE(3), where
gF/E = gF/X(s = ℓ). Consequently, the pose of the end-
effector frame E with respect to I is

gI/E = gI/F(qR)gF/E . (2)



Fig. 1: Schematic of the HSMS platform.

According to [19], the relationship between g(s) and the
strain field ξ̂(s) is given by

ξ̂(s) = g−1(s)g′(s), ξ̂(s) ∈ se(3), (3)

where (·)′ ≜ ∂/∂s(·). Similarly, the velocity field η̂(s) ∈
se(3), also referred to as body twist, is defined as

η̂(s) = g−1(s)ġ(s), (4)

with ˙(·) ≜ ∂/∂t(·).
From Eq. (4), the end-effector twist can be written as

η̂E
I/E = g−1

I/E ġI/E , (5)

where, in general, vector ηZ
X/Y ∈ R6 is read as “the velocity

components of frame Y with respect to frame X , expressed
in frame Z”. In what follows, when the superscript is
omitted, assume Z ≡ Y . Substituting Eqs. (1) and (2) into
Eq. (5) and transforming the twists by means of the Adjoint,
we obtain

η̂I/E = Adg−1
B/E

(η̂I/B)+· · ·+Adg−1
R2/E

(η̂R1/R2
)+η̂F/E . (6)

Although Eq. (6) expresses the end-effector twist as the
sum of the system’s body velocities with respect to their par-
ent frames, we seek a more convenient relationship involving
only the base velocity, the rigid-link joint rates, and the
strain field rate ˙̂

ξ(s). In a purely rigid manipulator, the joint
velocities are linearly mapped to the end-effector’s Cartesian
velocity through the end-effector Jacobian (see Chapter 3 in
[16]). Therefore, the twist coordinates in Eq. (6) can also be
obtained as

ηI/E = JE
R(qR)q̇R + ηF/E . (7)

A few additional steps are needed to express ηF/E in
terms of the strain field rate, whose detailed explanation can
be found in [18]. In summary, after stating the following
compatibility equation at the strain and velocity level,

η̂′ =
˙̂
ξ − adξ̂(η̂), (8)

an expression for η̂(s) can be found by analytical integration
of Eq. (8),

η̂(s) = Ad−1
g(s)

(∫ s

0

Adg(σ)
( ˙̂
ξ(σ)

)
dσ

)
. (9)

Since the strain field ξ̂(s) is infinite dimensional, in order to
make the problem tractable, the following approximation of
the strain field by means of a set of basis functions Φξ has
been proposed,

ξ(s, qS) = Φξ(s)qS + ξ∗(s), (10)

where Φξ : R 7→ R6×S is a function of the arc-length
coordinate, qS ∈ RS is a finite-dimensional vector of
discretizing coordinates, and ξ∗(s) is a reference strain state.
The approximation in Eq. (10) underpins the approach known
as Geometric Variable Strain (GVS) (see [19], [20], [21]).
Inserting Eq. (10) into Eq. (9) and letting ξ∗ = 0, we obtain

η(s) = Ad−1
g(s)

∫ s

0

Adg(σ)Φξ(σ)dσ q̇S, (11)

in which the right hand side can be approximated, for
example, with a quadrature method. Plugging Eq. (11) into
Eq. (6) yields

ηI/E = JE
R(qR)q̇R +Ad−1

gF/E

∫ ℓ

0

AdgF/XΦξ(s) dsq̇S (12)

= JE
R(qR)q̇R + JE

S (qS)q̇S (13)

= JE(q)q̇, (14)

where q =
[
qT

R, q
T
S

]T ∈ Rn=6+R+S , JE ≜ [JE
R,J

E
S ], and we

have defined the soft end-effector Jacobian as follows,

JE
S ≜ Ad−1

gF/E

∫ ℓ

0

AdgF/XΦξ(s) ds. (15)

Note that a further acceleration-level relationship can be
constructed by differentiating Eq. (14) (see details in [18]),

η̇I/E = J̇E(q, q̇)q̇ + JE(q)q̈. (16)

B. HSMS Dynamics

Building upon the kinematic model presented in Sec-
tion II-A, the dynamic model of the HSMS can be derived
by applying the D’Alembert’s form of the principle of virtual
work (PVW).

To this end, consider the j-th rigid body within the
HSMS, for which momentum variation equals the net applied
wrench, as follows,

∂

∂t
ℓIj = wI

j . (17)

In Eq. (17), ℓIj = Mjη
I
I/j is the body momentum, Mj is the

constant body inertia matrix, and wI
j is the net wrench acting

on j. We expand the net wrench as wI
j = wI

j,e+wI
j,a+wI

j,c,
where wI

j,e,w
I
j,a,w

I
j,c denote the wrenches due to external

factors, to the actuation and to the constraints, respectively.
Then, after applying the coordinate transformations ℓIj =



Ad∗gI/j
ℓj and wI

j = Ad∗gI/j
wj , Eq. (17) can be rewritten

in the j-th body coordinates,

Mj η̇I/j + ad∗
ηI/j

MjηI/j = wj,e +wj,a +wj,c. (18)

The dynamic equilibrium for the cross-sectional frame X
along the soft link has a similar formulation [18],

M̄X η̇I/X + ad∗ηI/X
M̄XηI/X = (µ−wX ,a)

′

+ ad∗ξ(µ−wX ,a) + w̄X ,e, (19)

where M̄X is the cross-section inertia matrix, µ is the
internal wrench, wX ,a is the wrench provided by the soft
actuators and w̄X ,e is the net external load per unit of
material length.

Let us recall D’Alembert’s formulation of the PVW [22],
written as

δW = δWint − δWext = 0, (20)

where δWint and δWext denote the total internal and external
virtual work, respectively. Within the HSMS, the internal
virtual work is performed by the internal wrench µ and by
the soft actuation wrench wX ,a acting along a compatible
variation of the strain, denoted as δξ,

δWint =

∫ ℓ

0

δξ · (µ−wX ,a) ds. (21)

The total external virtual work is accomplished by the body
loads and by the inertial forces introduced in Eqs. (18) and
(19),

δWext = δrB ·fB +
∑
i=1,2

δrRi
·fRi

+

∫ ℓ

0

δrX ·fX ds, (22)

where δrB, δrRi
and δrX denote the virtual displacements,

and the following quantities have been defined,

fB ≜ wB,e +wB,a − (MBη̇I/B + ad∗ηI/B
MBηI/B), (23)

fRi
≜ wRi,e

+wRi,a
− (MRi

η̇I/Ri
(24)

+ ad∗
ηI/Ri

MRi
ηI/Ri

), (25)

fX ≜ w̄X ,e − (M̄X η̇I/X + ad∗
ηI/X

M̄XηI/X ). (26)

Note that the constraint reaction forces do not contribute to
the work performed during any admissible virtual displace-
ment.

To obtain the equations of motion, the virtual displace-
ments in Eqs. (21) and (22) need to be expressed in terms
of the system’s generalized coordinates,

δξ = Φ̂ξδq, δrB = JBδq, δrRi
= JRiδq, δrX = JX δq,

(27)
where Φ̂ξ,J

B,JRi ,JX project δq onto the relevant dis-
placement. With additional (omitted) steps, the system’s
velocities and accelerations are also obtained in terms of
q, q̇, and q̈. After carrying out the necessary substitutions in
Eqs.(23)-(26) as well as in the expressions of δWint (Eq. (21))
and δWext (Eq. (22)), the PVW equality in Eq. (20) is applied
and rearranged to yield the following compact form of the
HSMS dynamics:

M(q)q̈ +C(q, q̇)q̇ +K(q)q = Wext(q) +B(q)u. (28)

Here, M ∈ Rn×n is the generalized inertia matrix, C ∈
Rn×n contains the nonlinear velocity terms, K ∈ Rn×n

originates from the elastic deformation of the soft link,
Wext ∈ Rn describes the effect of the applied external
wrenches and B ∈ Rn×m maps the actuation inputs u ∈ Rm

onto the configuration space.
It is noteworthy that, unlike current results for spacecraft-

mounted continuum manipulators (e.g., [23]-[25]), the
HSMS dynamics in Eq. (28) are obtained as a compact set
of minimum-order ODEs rather than as a high-dimensional
system of differential-algebraic equations (DAEs). This is
particularly useful when tackling control design for the
combined HSMS system, as shown in the following section.

III. CONTROL DESIGN
In this section, we leverage the results from Section II

to design a controller for the HSMS. Our main objective is
to demonstrate how the proposed modeling approach greatly
simplifies the control design for the system at hand. Hence,
we focus on a relatively straightforward inverse-dynamics
controller and leave the development of more advanced
schemes for future work. In what follows, we assume that the
external wrench acting on the system is negligible compared
to the control action u, and therefore consider Wext = 0.

Consider the problem of designing a control law such that
the end-effector of the HSMS tracks a time-varying position
rI

I/D(t), where D denotes a desired frame. To this end, we
define a reference curve in SE(3), gI/D : R → SE(3),

gI/D(t) =

[
RI/D rI

I/D(t)
01×3 1

]
, (29)

where RI/D ∈ SO(3) is the attitude of the desired frame,
considered constant for the sake of simplicity. Given gI/D, its
time derivatives ġI/D and g̈I/D are easily computed. Then,
the desired end-effector twist is obtained leveraging Eq. (4),

η̂E
I/D = AdgE/D (η̂

I
I/D) = AdgE/D (g

−1
I/DġI/D), (30)

from which the velocity error follows, η̂E
E/D = η̂E

I/D − η̂E
I/E .

Note that the linear velocity of the end-effector expressed in
the E frame is given by vE

I/E = JE
l (q)q̇, where JE

l is an
appropriate partition of the Jacobian JE . Finally, the time
derivative of the desired end-effector twist is obtained by
differentiating Eq. (30),

˙̂ηE
I/D = adη̂E/D

(
AdgE/D (η̂I/D)

)
+ AdgE/D (

˙̂ηI/D). (31)

Notice that the linear velocity error of the end effector,
vE

E/D ∈ R3, and its desired linear acceleration v̇E
I/D ∈ R3

are known since ηE
E/D =

[
(ωE

E/D)
T, (vE

E/D)
T
]T

and η̇E
I/D =[

(ω̇E
I/D)

T, (v̇E
I/D)

T
]T

.
Lemma 3.1: Consider the hybrid spacecraft manipulator

system with dynamics described by Eq. (28), and let rI
I/D(t)

be a desired position trajectory for the end-effector frame E .
The feedback control law

u =
(
JE
l M

−1B
)†[

θ+JE
l M

−1(Cq̇+Kq)− J̇E
l q̇

]
(32)

yields the following decoupled task-space dynamics,

v̇E
I/E = θ, (33)



(a) HSMS configuration at t =
0 s.

(b) HSMS configuration at t =
100 s.

(c) HSMS configuration at t =
200 s.

(d) HSMS configuration at t =
300 s.

Fig. 2: Snapshots of the tracking scenario. The blue curve
denotes the end-effector trajectory throughout the maneuver,
while the black one represents the desired end-effector path.

where θ is an auxiliary control input. Moreover, if

θ = v̇E
I/D +Kdv

E
E/D +Kpr

E
E/D, (34)

with Kd,Kp ≻ 0, then limt→∞ rI
I/E(t) = rI

I/D(t).
Proof: The proof follows the standard procedure show-

ing asymptotic stability of a task-space inverse dynamics
controller (see, e.g., Sec. 5.4 in [16]), and is therefore left to
the reader.

IV. NUMERICAL RESULTS
The model and controller presented in the preceding

sections have been implemented in MATLAB leveraging the
SoRoSim library [26]. Our case study considers the system
depicted in Fig. 1, whose main physical parameters are
reported in Table I. The soft link has a Young’s modulus of
106 N/m2 and a Poisson’s ratio equal to 0.5. Following the
GVS approach introduced in Eq. (10), we choose to parame-
terize the y-axis bending of the soft appendage with a linear
function, while the z-axis bending is described by a constant.
Torsion, shear and extension are neglected. To increase

TABLE I: Physical parameters of the hybrid spacecraft-
manipulator system (HSMS).

Body Shape Dimensions, m Density, kg/m3

Base Cube Edge: 1 100

Rigid links Cylinder Radius: 0.1 100Height: 2

Soft link Cylinder Radius: 0.01 1000Height: 1

realism in our simulations, we choose to actuate the base by

Fig. 3: End-effector position and velocity tracking error.

means of thrusters and single-gimbal variable-speed control
moment gyros (VSCMGs), following a similar approach to
[27]. The rigid manipulator links are actuated by two revolute
joints, while the soft link is actuated with three parallel
tendons routed along the whole backbone length, whose
coordinates in the cross-section frame X (s) are defined
in meters as d1(s) = [0, 0.05 cos (π/6), 0.05 sin (π/6)]T,
d2(s) = [0,−0.05 cos (π/6), 0.05 sin (π/6)]T and d3(s) =
[0, 0,−0.05]T.

The end-effector is commanded to follow the so-
called Viviani curve, specified as rI

I/D(t) =
[
ρ
(
1 +

cos(ωt)
)
, sin (ωt) , 2 sin (0.5ωt)

]T
, where ρ = 0.3 m and

ω = 2π/T , with T = 150 s. The controller gains in
Eq. (34) are set to Kp = 0.03I3 and Kd = 0.3I3, where
I3 is the identity matrix of dimension 3. In the interest of
brevity, we only present a few snapshots of the tracking
maneuver (Fig. 2), along with the corresponding tip position
and linear velocity errors in Fig. 3. The error charts in
Fig. 3 confirm that the proposed controller achieves excellent
tracking performance. For better visualization, animations
of the maneuver can be found at https://youtu.be/
kU00tmeFRSU.

V. CONCLUSIONS

This paper formulates the dynamic model of a novel
hybrid soft-rigid space manipulator system, leveraging geo-
metric mechanics and the GVS methodology—a soft robotics
approach that parametrizes continuum body strain via user-
defined basis functions. The advantage of the proposed ap-
proach is demonstrated by the straightforward derivation and
numerical implementation of a task-space tracking controller.

Overall, this work provides a first investigation of the
modeling and control of hybrid soft–rigid space robotic plat-
forms, which offer higher dexterity and operational flexibility
compared to purely rigid systems. Many promising research
directions remain open in terms of further analysis, control
synthesis, and experimental validation of the proposed ap-
proach.

https://youtu.be/kU00tmeFRSU
https://youtu.be/kU00tmeFRSU
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